Quantitative Interpretation of Seismic Facies – A case study, Oriente Basin Ecuador
A. Williamson§, Rick Walia†, Chuandong Xu†, Michael Koop†, Gino Lopez§
§EnCana Corporation, Calgary, †CGG Canada Services Ltd., Calgary, Canada

Summary
Interpretation of several 3D volumes from the Oriente basin suggests that faults define the extent of a given field. Additionally, the subtle stratigraphic boundaries characterised by the clay-filled zones of low porosity compartmentalise oil pools within a field. Identification of these zones is critical. In our experience, neural network based waveform classification has proven to be a successful tool to identify these zones. Qualitative analysis of seismic facies derived from the classification is a common practice. However, we demonstrate in this paper that the quantitative interpretation of seismic facies is possible provided a geological understanding of the seismic signatures is achieved. This paper discusses the extensive 1D-modeling carried out to comprehend the trace shape variations due to changing isopach of the sand/shale sequences, which was fundamental in assigning a realistic geological model to each facies. Also described in the paper is the workflow and a key methodology developed to derive “Net thickness” of reservoir sands from the seismic facies. Rigorous study of this technique on several 3D data sets from Ecuador’s Oriente Basin has produced results, which have established the foundation for understanding the depositional environments and the reservoir models, validated by subsequent drilling.

Introduction
Ecuador has three distinct geographical provinces, from west to east: the coast, the mountains and the headwaters of the Amazon jungle. The Oriente basin underlies the jungle region and is bounded on the west by the Andes Mountains and on the east by gradual rise onto the Guayana shield (Fig.1, study area shown in red). In this study we focus only on the Napo formation of the Cretaceous sedimentary cycle of the Oriente basin (Fig.2). Several of the Napo sandstones, the T, Lower_U, Upper_U, M2 and M1 are significant oil reservoirs. The Napo ‘U’ sandstone member, whose wavelet signatures are modelled and studied in this paper, comprises a sequence of stacked sandstones (up to 150ft thick with a porosity range of 10-25% porosity) with interbedded siltstone and carbonaceous claystones.

Waveform classification method
Seismic waveform classification is a useful tool for reservoir characterization and facies identification. Seismic traces extracted over a time interval tracking a target horizon are input to the classification process. The neural network trains on the variety of waveforms and generates a series of synthetic traces called neurons that best represent the diversity of shapes. The neurons are organized in pre-defined and numbered classes. Every trace of 3D volume within the interval is then compared to the neurons and assigned the class number of the neuron to which it has the highest correlation. Depending upon the thickness of the target zone and its surrounding stratigraphic column a time window needs to be determined to identify the representative seismic character for the classification. Extensive 1D-modeling carried out to estimate the optimum time-window is discussed in the first part of this paper. Fig.3 shows different units within the target stratigraphic column, whose signature is under study for the waveform classification. The objective is to study how the thickness variation, mainly of LU_sand, shale and UU_sand affect the seismic waveform so that suitable time-intervals can be estimated for the waveform classification of the UU and LU_sand.
Quantitative Interpretation of Seismic Facies

Modeling
The well impedance logs were blocked so that all the main interfaces are represented by a change in impedance. Synthetics were generated using zero-phase wavelets and compared to the seismic data. Impedance was not varied in these experiments as it exhibited little variation in the available well data. Well data was cross-plotted to study the inter-relation within the thickness variations of these units. Based on these results several geologically realistic models developed and 1D modeling was carried out using several combinations of thickness of the LU_sand, shale and UU_sand. Two such modeling experiments are discussed below:

Thickening of UU-sand: Fig.4 shows a model where thickness of only UU_sand was increased from 24ft to 48ft, keeping thickness of other stratigraphic units constant. It can be seen that the tops of A_Lst and B_Lst are well-defined peaks (PA & PB respectively), however at the seismic frequencies (6-12-65-75Hz) it is not possible to resolve the top and base of the UU_sand, Shale and LU_sand. Instead we see thin layer interference at these boundaries resulting in trough T1, peak P1 and trough T2. From the comparison of the traces on the left and the right, it is clear that thickening of UU_sand causes higher amplitude of P1.

Thickening of LU-sand and thinning of shale: Another realistic scenario we modeled is the reciprocal relation observed between the shale and the LU_sand. Well M-08 and M-06 provide such an opportunity to study the effect on the trace shape due to thickening of shale and thinning of LU_sand at the same time. From the simple modeling (Fig.5) it is clear that thinner shale and thicker LU_sand (M-08) give stronger T1 and weaker T2. It provides a useful signature for the waveform classification process to identify and delineate trends of the thicker reservoir LU_sands.

Waveform Classification Process
Modeling results provided a thorough understanding of how the seismic trace shape over the target interval is affected by the thickness of the different stratigraphic units. Hence it was easy to determine a representative time window over which a particular geological model can be associated. Based on these modeling results a few unsupervised waveform classification runs were carried out to map particularly the UU_sand and LU_sand. One such map of UU_sand is shown in Fig.6, where a time window of A_Lst pick-to-16ms down was used. This time interval was selected so that the peak P1 related to the UU_sand thickness (as
Quantitative Interpretation of Seismic Facies

modeled in Fig.4) can be mapped over the field. The facies corresponding to a weaker peak P1 (red) indicating thinner UU\textsubscript{sand} exhibit a remarkable geological trend, which matches to the well thickness shown in Fig.3. For example, wells M-06, M-07, M-08 and M-12 show relatively thin UU\textsubscript{sand} (10-18ft) in comparison to M-01, M-09, M-10 and M-15 (~31-42ft). Seismic facies maps at the different sands LU\textsubscript{sand}, M1\textsubscript{sand} etc. were also prepared and successful locations have been drilled.

Seismic Facies Analysis – Top of Porosity Prediction

The detailed analysis and modeling of the seismic signatures to assign a geological meaning to each neuron resulted in an important methodology, which can be used to predict the top of porosity. This analysis was carried out at the M1\textsubscript{sands} - the top of the Napo formation (Fig.2), which are also excellent producers in the Oriente basin.

Fig.7 shows well logs where M1\textsubscript{zone Top} and M1\textsubscript{zone Base} are marked, which are well-defined seismic picks. The base of porous M1\textsubscript{sands} corresponds to the base of M1\textsubscript{zone}, however the top of porosity of the M1\textsubscript{sand} does not provide a pickable seismic event. In an effort to predict the top of the porosity neurons from the waveform classification run were studied and cross-plotted with the Net/Gross data available from about 80 wells on this field. An excellent correlation was obtained between the Net/Gross and the neuron class “C”, which can be expressed as:

![Waveform classification for the time interval A_Lst-to-16ms-down showing trends of UU\textsubscript{sand} thickness.](image)

![Log data showing the Net and Gross thickness of the M1\textsubscript{zone}. Seismic data showing that the top and base of M1\textsubscript{zone} are well-defined seismic events. Base of porosity is within a few feet to the Base of M1\textsubscript{zone}.](image)
Quantitative Interpretation of Seismic Facies

\[\text{Net/Gross} = 0.0188C + 0.6836, \text{ where } C \text{ is neuron class number} \]

Fig. 8 shows neuron classes from 1 to 12 so that “No reservoir” corresponds to Neuron-1 and “High Net/Gross” corresponds to Neuron-12. The gross thickness is readily computed from isopach maps derived from depth-converted surfaces from the top and base of the M1 zone. Therefore, multiplying seismic gross thickness to the Net/Gross from the above equation gives the total thickness of the porous zone. As shown in Fig. 7b the depth to the base of porosity is known from the seismic pick. Hence adding the total thickness to the depth of the base of the porosity gives the top of porosity surface in depth. The scheme discussed above was applied and the predicted top of porosity was compared with the actual top of porosity of about 80 wells (Fig. 9).

Conclusions
We successfully demonstrated that the quantitative interpretation of seismic facies derived from waveform classification is possible, provided a geological understanding of the seismic signatures is achieved. Extensive modeling and interpretive processing validated the geological model assigned to each neuron obtained from the waveform classification process. Further analysis of these seismic signatures resulted in the development of an important technique, which can be used to predict the top of porosity of M1 sands. Comparison of predicted depth of the top of porosity with the well data confirmed the accuracy of the methodology, further validated by the successful drilling.

Acknowledgements
The authors thank EnCana Corporation and CGG for their approval to publish this work.

References